Skip to main content

Tag: Environment

TAU to Switch to Sustainable Electricity within Two Years

University becomes first in Israel to unroll plans for ‘green’ campus transformation.

In a first among Israeli universities, Tel Aviv University announced its plans to switch entirely to renewable electricity within two years. The pledge comes following the completion of a comprehensive assessment of campus’ greenhouse gas emissions (direct and indirect), as part of initial steps in a 10-year plan towards carbon neutrality.

Comprehensive Evaluation

External company EcoTraders conducted the evaluation according to the GHG Protocol – a global standardized framework used to measure greenhouse gas emissions. The comprehensive report includes details on all campus facilities that are owned and operated by the University, including the Broshim and Einstein student dormitories. The carbon footprint of the University’s suppliers was also assessed – from electricity consumption on campus, to transportation and construction inputs, to the food served at conferences and cafeterias.

The report was conducted using the University’s 2019 emissions data as a baseline year reference, before the outbreak of the COVID-19 pandemic, which disrupted many activities, resulting in a temporary reduction in emissions.

Moving towards Carbon Neutrality

“Tel Aviv University has decided to do its modest part to reduce greenhouse gas emissions, which is crucial for addressing the climate crisis,” says Prof. Ariel Porat, President of Tel Aviv University who also chairs TAU’s Green Campus Committee. “We intend to formulate a methodical and detailed 10-year plan, with the goal of attaining carbon neutrality further down the road. Our hope is to inspire other institutions in Israel and around the world to take similar actions, which, in addition, help educate the next generations about this important subject.”

Gady Frank, TAU’s Director-General adds, “We are working to make sure that in two years all the electricity produced on campus will be green. Currently, we have more than 5000 meters of photovoltaic cells, and our goal is to triple their amount on campus rooftops. In addition, we will install storage facilities, which will drastically increase the yield of these solar cells. The rest of the energy would be bought from private suppliers specializing in producing energy solely from green sources.”

 

“We intend to formulate a methodical and detailed 10-year plan, with the goal of attaining carbon neutrality further down the road. Our hope is to inspire other institutions in Israel and around the world to take similar actions.” 

 

Green roof of TAU’s Porter building

Recruiting Experts

About a year ago, the University’s Green Campus Committee, led by President Prof. Ariel Porat and Director-General Gady Frank, appointed a team of academic and administrative experts to create a strategic plan with the goal of significantly reducing greenhouse gas emissions on campus by encouraging more efficient use of resources and investing in renewable energy.

The team of experts hired EcoTraders to perform a baseline assessment of the overall carbon footprint of all TAU activities, on and off campus.

The team includes Prof. Marcelo Sternberg, Head of the Expert Team from George S. Wise Faculty of Life Sciences; Dr. Vered Blass and Dr. Orli Ronen – both of the Porter School of the Environment and Earth Sciences; Prof. Avi Kribus from the Iby and Aladar Fleischman Faculty of Engineering; Ofer Lugassi, Deputy Director-General for Engineering and Maintenance; and Alon Sapan, Director of the Steinhardt Museum of Natural History.

Developing a Practical Plan

“We set out on this mission about a year and a half ago and decided that in order to lead real change on campus, we must conduct a thorough and comprehensive mapping of all of the University’s greenhouse gas emissions,” explains the team of experts. “This is a complex process that required the enlistment of many parties on campus, who agreed for the first time to share with us, and the authors of the report, information that had not been made public until now.”

Now, with the publication of the report’s findings, the expert team is developing a practical plan to reduce TAU campus’ greenhouse gas emissions, to be presented for discussion within the Green Campus Committee and subsequently submitted for approval by the University administration.

It is the first time that an Israeli university has taken this kind of action, and the experts are confident that other universities will follow in TAU’s footsteps.

 

“It is not trivial that the University is investing resources in collecting and analyzing the data – and it is even less trivial that the University is publishing this data – but we are committed to our strategic vision of striving to attain carbon neutrality in the future.”

 

Highlights from Report

According to the report, in 2019, Tel Aviv University was responsible for greenhouse gas emissions amounting to approximately 70,000 tons of carbon dioxide, 93% of which were indirect, with only 7% constituting direct energy-related emissions from the campus, mainly from its air-conditioning systems.

According to the report’s authors, the total indirect emissions are broken down as follows: Electricity consumption on campus (42%); waste production and management (11%); transportation (12%); food and beverage services (7%); construction and building maintenance inputs (4%); fuel and energy for the University’s facilities (4%); procurement (4%); computer and laboratory equipment (3%); other (6%).

Prof. Ariel Porat, President of Tel Aviv University

Strategic Cuts

Numbers published in 2021 show that Tel Aviv University is responsible for emitting 1.56 tons of CO2-equivalent greenhouse gases per capita per year, compared to Yale University’s 8.2 tons, the University of Melbourne’s 2.7 tons, and the Leuphana University of Lüneburg, Germany’s 0.73 tons.

While the report shows that electricity consumption is the most polluting factor by far on TAU campus, reducing emissions generated from electricity consumption has so far not been an option, as the production method was determined by Israel’s Electric Corporation. However, this has changed. The experts say, “With the opening of the energy market, we plan to consider a transition from electricity suppliers that burn natural gas to suppliers that rely on renewable energy, and to expand the independent production of solar power within the campus.” When it comes to food procurement, the team will assess a variety of possibilities – from reducing the amount of food consumed, to precluding the ordering of meat products for events and kiosks.

The team concludes: “The new report lays down infrastructure that allows us to take a holistic view of the University’s total greenhouse gas emissions and identify the activities that cause the most pollution. This way, we can build comprehensive plans to reduce emissions from these activities in the short, medium, and long term. Moreover, the report will allow us to monitor and inspect the reduction in emissions over time and compare the numbers with the original values. It is not trivial that the University is investing resources in collecting and analyzing the data – and it is even less trivial that the University is publishing this data – but we are committed to our strategic vision of striving to attain carbon neutrality in the future.”

Asper Foundation, TAU Launch Innovative Clean Water Project

Gift enhances partnership between Tel Aviv University and one of Canada’s largest foundation.

Tel Aviv University together with the Canadian Friends of Tel Aviv University (CFTAU) on June 14 inaugurated the Asper Clean Water Fund, established with a $407,000 gift from The Asper Foundation, one of Canada’s largest private foundations. The funds will bolster the work of TAU’s Water Energy (WE) Lab to further develop technology that produces safe drinking water in the developing world. 

Headed by Prof. Hadas Mamane of TAU’s Fleischman Faculty of Engineering, the Lab is among numerous research teams devising solutions to address global water scarcity. Her Lab has developed a patented technology that uses LED lighting and solar energy to disinfect water. The laptop-sized device—called SoLED—operates without any chemicals or electricity to kill 99.9% of bacteria and viruses from water, making it cheaper and easier to use than existing solutions in remote areas. 

At least 2 billion people around the world use water from contaminated sources. Furthermore, unsafe water is linked to the deaths of an estimated 800 children each day. The issue predominantly affects people in the developing world, where access to clean water resources is often unaffordable or inaccessible. More so, as the impact of climate change increases, water scarcity will affect nearly half the world’s population by 2025, according to expert estimates. 

Among attendees at the inauguration ceremony at TAU were Gail Asper, President and Trustee of The Asper Foundation; Moses Levy, Executive Director of The Asper Foundation; TAU Vice President for Resource Development Amos Elad; Dean of the Engineering Faculty Prof. Noam Eliaz; and Prof. Mamane together with researchers from her lab. 

“My late parents, Israel and Babs, would be incredibly proud of this endeavor which will make such a positive impact on people’s lives,” said Gail Asper. “The research at Prof. Mamane’s Water-Energy Lab and at Tel Aviv University aligns with our Foundation’s commitment to supporting entrepreneurial spirit and to creating a better world. We are excited to embark on this journey to advance innovative ideas and change lives.” 

The support of The Asper Foundation, a leading force in Jewish and general philanthropy in Israel and Canada, will enable Prof. Mamane and her team to further expand the capabilities of the technology and field-test the device. Their ultimate goal is to produce a scalable version that could be manufactured for mass distribution.  

 

Prof. Hadas Mamane, head of Tel Aviv University’s Water Energy (WE) Lab, with the SoLED device. (Credit: Rafael Ben-Menashe/TAU)

The gift enhances the existing partnership of philanthropic support and collaboration between the Asper Family, based in Winnipeg, and the University. 

Tel Aviv University President Prof. Ariel Porat said: “As Israel’s largest research university, TAU places great importance on creating solutions to global challenges to the environment and society. We are thrilled to welcome The Asper Foundation as a partner and look forward to working with its team.” 

Prof. Mamane, Head of the Water-Energy Lab and Environmental Engineering Program at TAU, explained that her passion for the project stems from her deep-seated desire to help bridge the disparities in affordable clean water access, particularly for vulnerable peoples in rural and low-income communities. Her lab works with interdisciplinary teams from disciplines including Social Sciences, Psychology and Public Policy to determine the most effective ways to incorporate her technology into broader safe water delivery processes. 

“My team and I are delighted and honored by The Asper Foundation’s support,” she said. “This gift will accelerate our efforts to provide underserved populations with access to clean water—a basic human right and an endeavor that stands to save thousands of lives.” 

Canadian Friends of Tel Aviv University Chief Executive Officer (Ontario & Western Canada) Stephen Adler added: “CFTAU is proud to be a link between the great Canadian family and Israel’s leading research university. We look forward to seeing the fruits of this research and identifying ways to maximize its impact in Israel, Canada and around the world. We thank The Asper Family Foundation and the Asper Family for their continued support and friendship.” 

Standing Up to Climate Change

TAU researchers are making significant environmental impact on the ground—now.

A software programmer, an ecologist and a wildlife photographer enter a room. This is not the preamble to a joke. This is a normal scene in Dr. Ofir Levy’s Tel Aviv University lab, where a diverse group of scientists develop advanced tools to protect wildlife in the face of the accelerating climate crisis.

Levy is among the scores of TAU researchers who are pursuing innovative solutions under TAU’s Climate Crisis Initiative, also known as PlanNet Zero, a new nerve center uniting brainpower from all faculties—along with industry and government partners. Leveraging TAU’s interdisciplinary and entrepreneurial strengths, the Initiative aims to spearhead new technologies, models, regulations and policy recommendations for tackling the climate crisis.

“Climate records are being shattered nearly every year,” explains Levy of the School of Zoology, Wise Faculty of Life Sciences. “It is up to us to safeguard the biodiversity critical to the planet’s ecological balance.”

Together with researchers from TAU’s new Center for Artificial Intelligence and Data Science, Levy’s lab develops AI and machine learning technologies to simulate future ecosystems. Using these models, the decision-makers with effective recommendation for protecting them.

“AI is taking climate research to new frontiers,” explains Levy. “It offers a window into the future implications of climate change on the need for animals to modify their habitats because of desertification, urbanization and deforestation.”

Additionally, in cooperation with the Israeli Defense Ministry’s Directorate of Defense Research and Development, Levy is developing tools to assess the impact of climate change impact on search and rescue dogs. More frequent extreme weather phenomena may affect the sensory abilities and overall wellbeing of the dogs, he explains. His research could eventually help improve the animals’ ability to find and save people.

Levy recently won competitive grants from National Geographic’s “AI for Earth” and the joint TAU-Google “AI for Social Good” programs. 

Going forward, he hopes to apply his innovations to protecting people, such as early-warning systems for mass health events such as heat stroke or forecasting climate-related insect migration to prevent crop disease.

Mobilizing TAU’s Collective Power

Amid the growing global need to meet climate targets, TAU is redoubling efforts to lead transformative change and has made the topic an institutional priority.

“It’s now the era for scientists and academia to help find solutions to the climate situation,” says
Prof. Colin Price, who heads PlanNet Zero together with the Department of Environmental Studies at TAU’s Porter School of the Environment and Earth Sciences.

Among institutional efforts, TAU rolled out plans to reduce its environmental footprint and eventually reach carbon-neutrality, a benchmark Israel and other nations pledged to meet by 2050 to mitigate global warming.

Furthermore, the University launched several new programs to foster climate leadership. The new undergraduate course “Climate Change and Sustainability: A Multidisciplinary View” was the most popular of the 2020-21 academic year, with some 1,000 students enrolled. At a climate conference hosted by the Gordon Faculty of Social Sciences, Israel’s Minister of Environmental Protection and TAU alumna Tamar Zandberg announced a new government-backed scholarship program to support climate research by graduate students at the Faculty.

Moreover, in an effort to disentangle the climate crisis for the public, the Steinhardt Museum of Natural History at TAU unveiled the exhibition “Global Warning: The Climate, the Crisis and Us.”

“Climate change is the greatest challenge facing humanity today,” says Prof. Tamar Dayan, Chair of the Steinhardt Museum. “Alongside the exhibition, we aspire to turn our visitors into agents for change, who will carry the message beyond the Museum’s walls.”

Redesigning Trends in Sustainability

To push the needle on the global climate crisis, PhD candidate Meital Peleg Mizrachi, of TAU’s Department of Public Policy, is advocating for a fashion industry makeover.

​Peleg Mizrachi, an environmental justice researcher at TAU and social entrepreneur, is a rising authority in Israel on making fashion—the world’s second-most polluting industry—sustainable.

 

Meital Peleg Mizrahi (center) and friends modeling sustainable fashion

The process of manufacturing clothing emits over 40 billion tons of textile waste and 1.2 billion tons, or 10 percent, of greenhouse gases—the main driver of global warming. At the root of the industry’s environmental footprint, Peleg Mizrahi explains, is the exploding “fast fashion” market of quickly and cheaply mass-produced garments.

Under the supervision of Knesset Member and TAU Prof. Alon Tal, Peleg Mizrachi’s research explores ways to encourage economic regulation and consumer behavior that promote sustainable fashion. Tal is one of several TAU climate experts in prominent government roles, including zoology Prof. Noga Kronfeld-Schor, Chief Scientist at Israel’s Environmental Protection Ministry.

In a recent project, Peleg Mizrachi gauged the prices at which consumers are more inclined to shop sustainably. In other studies, she demonstrated how new technologies and market behaviors spurred by COVID-19 can be transformed into climate solutions.

She also applies her research toward grassroots advocacy. She was recently involved in a series of local climate policy conferences and founded ‘Dress Well,’ an organization that seeks to reduce textile waste in Israel.

״When we think of the climate crisis, we think of Australian wildfires, vanishing polar bears and droughts in Syria,” she says. “The connection between these events and the clothes in our closets are usually overlooked; in fact, fashion is one of the most significant factors in dealing with the climate crisis.”

TAU: Hub for Regional Cooperation

TAU’s location in the heart of the Middle East with proximity to Israel’s diverse ecosystems contributes to its edge in leading regional climate initiatives.

For example, to address trans-border water issues in the Middle East, TAU Prof. Hadas Mamane of the Fleischman Faculty of Engineering is eyeing cooperation opportunities with regional partners.

As floods, droughts and extreme weather intensify due to climate change, UNICEF estimates that by 2025, half of the world’s population will live in areas with water scarcity. Meanwhile, Israel’s chronic water shortage has necessitated the development of novel solutions.

 

Prof. Hadas Mamane     

Mamane heads the Water-Energy Laboratory, which develops efficient UV-LED lighting technologies that disinfect water using solar power, among its pursuits. The invention is suitable for use in remote areas with limited access to the chemicals and electricity used in traditional water decontamination.

Additionally, water monitoring tools developed by her lab are already used in India and Tanzania in several projects carried out with Dr. Ram Fishman of the Gordon Faculty of Social Sciences and Boris Mints Institute for Strategic Policy Solutions to Global Challenges.                                                                                                                                                                                                                                                                            

“We are trying to help some of the world’s most vulnerable populations access resources that should be afforded to them as part of their basic human rights,” says Mamane.

Now, Mamane hopes to launch a project with the Palestinian Authority and the Arava Institute for Environmental Studies to purify and disinfect sewage water for unrestricted agricultural use, including crop cultivation.

In another regional partnership borne through the Abraham Accords, TAU’s Moshe Mirilashvili Institute for Applied Water Studies, headed by Prof. Dror Avisar of the Porter School of the Environment and Earth Sciences, is involved in joint Israeli-UAE water research.

Enhancing Cross-Industry Impact

“The fastest way to make an impact on climate change is to apply academic knowledge toward accelerating relevant industry capabilities,” says Prof. Tamir Tuller of the Fleischman Faculty of Engineering and the Edmond J. Safra Center for Bioinformatics.

This is the approach that Tuller, head of TAU’s Computational Systems and Synthetic Biology Laboratory, takes with his start-up Imagindairy where he is co-founder and Chief Scientific Officer. The company uses his genetic engineering techniques to produce affordable dairy products from yeast.

Imagindairy aims to generate milk that is identical in taste, aroma and texture to cow products, Tuller explains, but without the environmental damage or ethical dilemmas associated with animal husbandry.

Cattle alone are responsible for approximately 65 percent of the livestock sector’s greenhouse gas emissions, mainly from methane that cows belch out while feeding.

“This type of technology could one day replace the need for dairy cows,” he says. He adds that widespread adoption of lab-developed milk substitutes has the potential to significantly curb emissions. But how will Tuller’s team get the public on board?

“Our models can eventually lead to products that are cheaper than traditional cow’s milk,” explains Tuller, underlining that economic incentive is key to impactful consumer behavior.

He expects Imagindairy’s products to be commercially viable within a few years. This quest was boosted with a recent $13 million investment, raised with support from Ramot – TAU’s technology transfer company.

Solid Foundations for Leadership

Dozens of TAU alumni have taken leadership roles that address climate issues on the international stage. Two of them, Dr. Ido Sella and the late Dr. Shimrit Perkol-Finkel, who was tragically killed in an accident last year, met as students at TAU.

In 2012, the pair founded sustainable concrete start-up, ECOncrete, which offers a more durable and ecological solution for coastal and marine construction than traditional concrete. The product simultaneously reduces carbon emissions and safeguards marine life. Today, the company is experiencing massive growth, and its eco-friendly solutions are used in more than 40 sites around the world. Similarly, its technology was recently tapped to anchor US offshore wind turbines as part of the White House administration’s aims to increase energy capacity a thousand-fold by 2030.

The late Dr. Shimrit Perkol-Finkel (left) and Dr. Ido Sella

“The concrete industry has a massive environmental footprint responsible for 8% of global carbon dioxide emissions and vast marine damage,” says Sella.

He explains that the demand for sustainable concrete has reached new heights as society—particularly the approximately 50% of population centers on coastlines—braces for a rise in sea levels and increased storminess due to climate change. 

“ECOncrete offers a new way to reduce the CO2 footprint of working waterfronts,” he says.

Sella sees oceans of potential for bringing more applied science to commercial endeavors via academia, thus propelling climate progress. 

Prof. Colin Price, too, underlines the need for all industries and sectors to work with academia to prevent catastrophic climate outcomes.

“We have big ambitions at TAU,” Price says. “We aim to have maximum impact and expand local models to regional and global scales.”

 

Climate Research at TAU:

TAU researchers from across campus are finding ways to mitigate climate change, among them:

  • Prof. Brian Rosen (Engineering) patented a technology that consumes greenhouse gases as a means to generate “clean” synthetic fuels.
  • PhD candidate Hofit Shachar (Exact Sciences) is developing an app that predicts the risk of wildfires through smartphone sensors and weather data.
  • Dr. Eran Tzin (Law) applies his research as head of TAU’s Environmental Justice and Animal Rights Clinic to advance legislation to ensure implementation of Israel’s climate commitments.
  • Prof. Colin Price (Exact Sciences) is building a nanosatellite to monitor global climate conditions from space. Dr. Ram Fishman (Social Sciences) discovered a link between violent crime and rising temperatures. 
  • Sophia Igdalov, of Dr. Vered Blass’s team (Exact Sciences), evaluated the carbon footprint of materials used in Israel’s housing industry, suggesting strategies to cut emissions.

Tackling Environmental Challengesin TLV and Monaco

As part of TAU’s practical work in mitigating the effects of air pollution and climate change, the Frenkel Initiative to Combat Pollution supports projects between TAU, Israeli companies and Monaco. Current initiatives include operating an accelerator for startups in clean energy, air purification and replacing plastic; introducing smart transportation solutions to Monaco officials for reducing carbon emissions; and researching critical problems specific to Monaco such as urban heat stress and maritime transport emissions.

​​

Monaco Bay

Although the Initiative attempts to find technological solutions specifically for Monaco, TAU Benefactor and Governor Aaron Frenkel hopes it can make an outsized contribution toward combating climate change and related environmental threats for the entire Mediterranean region and beyond. The Frenkel Initiative is also affiliated with the Prince Albert II of Monaco Foundation, which is dedicated to safeguarding the environment. 

By Julie Steigerwald-Levi

The Ultimate Solution to Global Warming?

Breakthrough TAU discovery may accelerate an industrial transition to sustainable energy.

Hydrogen-powered bicycles and cars have been in serial production for years. In these vehicles, the regular polluting lithium battery has been replaced by a fuel cell that converts hydrogen, a non-polluting fuel, to electricity. Most of today’s hydrogen is, however, still produced from natural gas in a highly polluting process and is therefore referred to as gray hydrogen. Not only is natural gas a non-renewable source of energy, but it also creates carbon dioxide gas when burned, damaging our environment and contributing to global warming.

Enter a new TAU discovery, which may boost the industrial transition from using polluting gray hydrogen to environmentally friendly green hydrogen: Researchers identified a mutant of a known strain of microscopic algae that allows, for the first time, the production of green hydrogen gas via photosynthesis on a scale suited to industrial requirements. Hydrogen gas can thus be produced solely through renewable energy and in a climate-neutral manner, reducing our carbon footprint and greenhouse gas emissions dramatically to stabilize global temperatures. 

Humanity’s transition to the use of green hydrogen may be the ultimate solution to the problem of global warming.

The microscopic algae

Continuous Production Achieved

The study was led by doctoral student Tamar Elman, under the supervision of Prof. Iftach Yacoby from the Renewable Energy Laboratory of The George S. Wise Faculty of Life Sciences at Tel Aviv University. The study was recently published in the prestigious journal Cell Reports Physical Science

While production of green hydrogen is possible through solar panels wired to devices that perform water breakdown into hydrogen and oxygen (electrolysers), the researchers explain that this is an expensive process, requiring precious metals and distilled water. In nature, hydrogen is produced as a by-product of photosynthesis for periods of minutes by micro-algae, unicellular algae found in every water reservoir and even in the soil. For this biological process to become a sustainable source of energy, however, humanity must engineer micro-algae strains that produce hydrogen for days and weeks.

Prof. Yacoby explains that as part of the laboratory tests, the researchers identified a new mutant in microscopic algae that prevents oxygen from accumulating at any lighting intensity, and therefore hypothesized that continuous hydrogen production could be achieved from it. With the help of bioreactor measurements in liter volumes, they were indeed able to prove that hydrogen can be produced continuously for more than 12 days.

According to Prof. Yacoby, the new mutant overcomes two major barriers that have so far hindered continuous production of hydrogen:

  1. Accumulation of oxygen in the process of photosynthesis – As a rule, oxygen poisons the enzyme that produces hydrogen in algae, but in the mutation, increased respiration eliminates the oxygen and allows favorable conditions for continuous hydrogen production.
  1. Loss of energy to competing processes – And this includes carbon dioxide fixation into sugar. This, too, has been solved in the mutant and most of the energy is being channeled for continuous hydrogen production.

To industrialize these results, the research team led by Prof. Yacoby is working on a pilot program of larger volumes and the development of methods that will allow the time of hydrogen harvest to be extended, in order to reduce its cost to competitive levels. “The rate of hydrogen production from the new mutant reaches one-tenth of the possible theoretical rate, and with the help of additional research it is possible to improve it even further,” concludes Prof. Yacoby.

 

Tamar Elman and Prof. Iftach Yacoby in the lab

Featured image: Tamar Elman and the microscopic algae

Microplastics Increase Toxicity of Organic Pollutants by a Factor of 10

May cause severe damage to our health.

Microplastics are tiny fragments of plastic that are found almost everywhere: in wells, soil, food products, water bottles, and even in glaciers at the North Pole. A new study by Tel Aviv University researchers found that in a marine environment, microplastics encounter environmental pollutants that attach to their surface and increase their toxicity by a factor of 10, which may cause severe harm to the environment and human health.

The study was conducted by Dr. Ines Zucker of the School of Mechanical Engineering and the Porter School of the Environment and Earth Sciences at Tel Aviv University, together with Ph. D. student Andrey Eitan Rubin. The study was recently published in the prestigious journal Chemosphere.

‘Magnets’ for Environmental Pollutants

In the study, the researchers examined the entire process that the microplastic undergoes, from the interactions it has with environmental pollutants to the release of the pollutants and the creation of increased toxicity.

The researchers found that adsorption of those organic pollutants to the microplastics increases toxicity by a factor of 10 and may also cause severe impact on humans who are exposed to contaminated food and drink.

“In this study we showed that even very low concentrations of environmental pollutants, which are non-toxic to humans, once adsorb to the microplastic result in significant increase in toxicity,” says Dr. Zucker. “This is because microplastics are a kind of ‘magnet’ for environmental pollutants, concentrating them on its surfaces, ‘ferrying’ them through our digestive tract, and releasing them in a concentrated form in certain areas – thus causing increased toxicity.”

 

From left to right: Ph. D. student Andrey Eitan Rubin, Dr. Ines Zucker and Dr. Amit Kumar Sarkar

Not Just a Remote Problem

Ph. D. student Andrey Eitan Rubin adds: “For the first time we are presenting a complete ‘life cycle’ of microplastics: from the moment of their release into the environment, through the adsorption of environmental pollutants and up to their joint toxicity in humans.”

“The amount of waste dumped into the ocean every year is enormous – the best known example is the plastic island in the Pacific Ocean, which has an area 80 times larger than the State of Israel.”

This is not just a remote problem. The researchers’ preliminary monitoring data show that Israel’s shores are among the most polluted with microplastic waste. “Each of the microplastic particles secreted in these areas has tremendous potential for harm, as they serve as an effective and stable platform for any pollutant that they may encounter on their way to the human body,” warns Rubin.

                                                                                                                   “This is another painful reminder of the dire consequences of polluting the marine and terrestrial environment with hazardous industrial waste, which has unfortunately been saturated with plastic in recent decades. The dangers are not theoretical but are more tangible than ever. Although there is a great deal of awareness of this problem, the preventive measures in the field are still far from imprinting a significant mark,” concludes Dr. Zucker.

How Can We Boost Our Fight Against Marine Plastic Pollution?

TAU researchers say global standardization must be established.

Plastic wastes endanger marine life in many ways: animals get entangled in large plastic items or swallow small particles and chemicals, consequently dying of suffocation, starvation or poisoning. Awareness is growing, and research is expanding, but the effort to monitor and prevent plastic pollution encounters many obstacles, first of all due to the enormous complexity and diversity of plastic debris.

A new review from Tel Aviv University has determined that global standardization of methodologies for monitoring and measuring marine plastic pollution can significantly boost international efforts to mitigate this troubling phenomenon. In a comprehensive survey of all methods described in existing literature, the researchers charted the great complexity and diversity of marine plastic pollution, which makes unified measurement and accurate evaluation very difficult. According to the researchers, this is precisely why a standardized system is urgently needed, enabling comparisons, exchange of information, and effective tools for decisionmakers.

Grave and Immediate Threat

The study was led by Gal Vered and Prof. Noa Shenkar of the School of Zoology at The George S. Wise Faculty of Life Sciences and The Steinhardt Museum of Natural History at Tel Aviv University. Gal Vered is also a researcher at the Interuniversity Institute for Marine Sciences in Eilat. The review was published in Current Opinion in Toxicology.

According to Prof. Shenkar, plastic pollution, which is all human-made, poses a grave and immediate threat to the marine environment, with constantly rising amounts of plastic entering the oceans. Thus, for example, a 2013 survey conducted by Israel’s Ministry of Environmental Protection found that plastic accounts for about 41% of the volume of waste produced annually by Israelis. The Covid-19 pandemic, which has generated extreme demands for personal protective and single-use products, has further exacerbated the problem.

Comes in Different Shapes and Forms

The researchers explain that marine plastic pollution comprises many different types of plastic and plastic products of various shapes and sizes – from huge ghost nets to nanoparticles, as well as a vast range of chemical additives. Different methods for monitoring, sampling, and identifying plastic pollution relate to different properties of the sampled material: from size, source, and original use, through shape and color, to chemical composition and physical properties. Sampling is usually conducted with a towed net, with the size of collected pollutants dependent on the net’s mesh size, and tiny particles are identified in the lab using various spectroscopic and chemical methods. In addition to the diversity in sampling and identification methods, units used for reporting measured concentrations of pollutants also vary: from the number of plastic objects per area, to the weight of particles per organism, and more.

“These differences generate confusion and lack of communication among researchers in different parts of the world, hampering our efforts to work together toward our common goal: providing decision makers with reliable data in order to promote the efforts to reduce plastic pollution and its many hazards,” explains Prof. Shenkar. “We are in urgent need of standardized methods and comparable measures for monitoring, sampling, identifying, classifying, and quantifying marine plastic pollution and its impact.”

International Collaboration Needed

“This study is a response to problems encountered in my research, which deals with the impact of plastic and its chemical additives on marine life in the Eilat coral reef (presenting Israel’s largest marine biodiversity),” says Gal Vered and explains: “The differences in methodology make it difficult to use the findings of other researchers – as either a source of information or for comparing results. Thus, for example, most measurements worldwide relate to samples obtained with a towed net from the surface of the water, while I wish to discover which materials reach the seafloor and reef organisms.”

“Standardization will enable accurate evaluations and valid comparisons between plastic pollutions in different places on the globe. This will maximize the power of scientific research, enhance our understanding of the impact of plastic pollution on ecosystems and marine life, and help us develop effective tools for decisionmakers facing this crucial issue.”

Prof. Shenkar concludes: “Marine plastic pollution is a global problem, which requires extensive international collaboration. At the bottom line, we all wish to focus our efforts and obtain the best results. Like many others, we believe that efforts should begin close to the shoreline, in areas directly impacted by plastic pollution. However, a great deal of research is still required in order to establish this assumption and build effective strategies for managing plastic pollution. But first of all, we urgently need standardization that will enable all of us, all over the world, to work together.”

Featured image: Prof. Noa Shenkar 

TAU Initiates Model for Carbon Neutrality

Climate change efforts among University’s top priorities.

Against the backdrop of the UN Climate Change Conference (COP26) in Glasgow, and following a comprehensive series of tests, TAU prepares to formulate a strategic plan for significantly reducing greenhouse gas emissions generated by its activities and promoting more efficient use of resources and renewable energy. The university places great importance on reducing its environmental footprint by using sustainable energy, recycling water and materials, reducing use of paper, introducing green purchasing procedures and other activities designed to reduce the campus’ carbon footprint, and eventually attain carbon neutrality.

Inspecting Footprints

To this end, a team of academic and administrative experts appointed by TAU’s Green Campus Committee headed by TAU President Prof. Ariel Porat, launched a comprehensive inspection to assess the overall carbon footprint (in terms of CO2 equivalent) and water footprint of all TAU activities both on and off campus. The analysis, which began approximately a year ago, included assessment of the following:

  • energy consumption from various sources on campus
  • water consumption
  • transportation to and on campus
  • construction inputs
  • pruning and gardening
  • waste production and food consumption
  • serving utensils and packaging at cafes and kiosks on campus, and more

The team will soon complete their mission and submit their findings to the Green Campus Committee and TAU’s senior management. Based on their report, TAU will formulate a strategic plan for reducing greenhouse gas emissions on campus and reaching carbon neutrality.

“It Can Be Done, And We Will Do It”

TAU President Prof. Ariel Porat: “As a leading academic research and teaching institution in the fields of ecology and environmental science, committed to addressing the climate crisis, TAU established an ‘initiative for carbon neutrality’ about a year ago – the first of its kind at an Israeli university. Currently we are completing the initial inspection, and its findings will serve as a foundation for a strategic plan that will significantly reduce the campus’ carbon footprint, and eventually bring us as close as possible to carbon neutrality. As a leading public university, it is our duty to lead the efforts for addressing the climate crisis on and beyond our campus. We hope that other institutions will join us. Time is running out and we must act immediately.”

“It is our duty to lead the efforts for addressing the climate crisis on and beyond our campus,” says TAU President Prof. Ariel Porat.

Prof. Marcelo Sternberg of the School of Plant Sciences and Food Security at The George S. Wise Faculty of Life Sciences, co-leader of TAU’s carbon neutrality initiative, added: “I am proud to be part of the team leading an historical move toward reducing TAU’s carbon footprint and turning it into a sustainable institution. The current climate crisis leaves no room for inaction. As a teaching and research institution, we can show the government and society the way to reducing the environmental footprint and ensuring a better world for future generations. It can be done, and we will do it.

Lior Hazan, Chair of TAU’s Student Union, added: “The climate crisis is spreading and intensifying, causing great concern. It is no longer something occurring far away, it is happening right here and now. We, the young people, have the power to change and work for a better future, in face of the gravest crisis of the 21st century, and academia is an excellent place to begin. Students must become leading ambassadors of this cause, since they are the future of society, industry, and leadership, and to this end, we must change and introduce change for the benefit of our planet. The Student Union takes an active part in TAU’s plan to attain carbon neutrality and continues to work for the rapid reduction of environmental damage.”

Ofer Lugassi, Vice President for Construction & Maintenance at TAU emphasized that the mapping of the university’s carbon and water footprints was carried out by a specialized external company, which made a great effort to include all activities on campus. 

Featured image: Students enjoying a moment on the increasingly greener TAU campus (Photo: Rafael Ben-Menashe)